Ulasan MOOC: Neural Networks and Deep Learning – oleh Andrew Ng (deeplearning.ai) via Coursera

Judul/Tautan

Neural Networks and Deep Learning

Kursus ini merupakan kursus pertama dari program Deep Learning Specialization di Coursera. Lihat juga ulasan kursus kedua.

Oleh

Prof. Andrew Ng – deeplearning.ai

Penilaian Saya

starf16starf16starf16starf16starf16 (5/5)

Format

Kursus online (MOOC) dengan kuis interaktif dan tugas pemrograman.

Tingkat

Pemula/menengah

Biaya

Kursus ini merupakan bagian dari program Deep Learning Specialization, yang biayanya $49 per bulan sampai selesai.

Ada masa free trial 7 hari, sehingga kalau Anda bisa menyelesaikan MOOC ini kurang dari 7 hari maka Anda bisa mendapat sertifikat secara gratis.

Durasi

    • 4 minggu dengan rata-rata komitmen 3-6 jam per minggu
    • Tiap minggunya kira-kira terdiri dari 1.5 jam video dan 2-4 jam tugas pemrograman
    • Kalau ngebut bisa diselesaikan dalam 2 hari

Tahun Pembuatan

2017

Penilaian oleh Situs Lain

Coursera:       starf16starf16starf16starf16starf16 (rating 4.9/5.0 oleh 21,617 murid) (lihat review)

Class Central: starf16starf16starf16starf16starf16 (rating 4.8/5.0 oleh 11 murid) (lihat review)

Persyaratan

  • starf16 Sebenarnya kursus ini cukup mudah dimengerti oleh pemula. Namun  menurut saya sebaiknya Anda telah mengetahui sedikit tentang machine learning (apa itu supervised learning, terutama linear/logistic regression dan sedikit neural networks) sebelum mengikuti kursus ini. Salah satu kursus yang saya anjurkan untuk pemula adalah kursus Stanford University’s Machine Learning oleh Prof Andrew Ng juga di Coursera.
  • starf16 Sebaiknya Anda telah mengerti sedikit tentang aljabar linier (operasi matriks) dan kalkulus (turunan) agar lebih nyaman dalam mengikuti penjabaran formula. Aljabar linier diajarkan di kursus Stanford University ML di atas, sedangkan untuk kalkulus turunan salah satunya dari Khan Academy.
  • starf16 Menguasai pemrograman Python, terutama Numpy, karena tugas pemrograman-nya dilakukan dalam bahasa Python dan tidak ada pembelajaran Python di kursus ini.

Lingkup Materi

Lingkup materi adalah teori dan implementasi dari neural networks dan “deep” neural networks. Dari segi teori, Anda akan diberikan intuisi beserta mekanisme dan formula tentang bagaimana neural networks bekerja, misalnya tentang forward dan back propagation, dan dari segi implementasi Anda akan dibimbing untuk mengimplementasikannya dalam Python.

Lingkup kursus ini adalah tentang dasar-dasar neural networks saja. Pengertian “deep” yang dijabarkan dalam kursus ini juga hanya “deep” dalam artian ada beberapa hidden layer dalam neural network-nya, dan bukan tentang arsitektur deep learning yang lebih canggih seperti CNN, RNN, LSTM, GAN, dsb. Optimasi dan tuning lebih lanjut dari desain neural network (misalnya regularization, hyper-parameters tuningearly exit, dsb.) juga tidak diajarkan di sini. Konsep-konsep yang lebih lanjut ini akan diajarkan di kursus lanjutan di program Deep Learning Specialization ini.

Catatan: saya membuat catatan tentang semua materi yang diajarkan di kursus ini dan dua kursus berikutnya di program spesialisasi ini. Lihat Student Notes: Neural Networks and Deep Learning

Menurut saya kursus ini cukup bagus sebagai penajaman dan pembaruan (update) atas kursus Stanford Machine Learning, karena kursus Stanford ML cukup “kuno” (dalam skala waktu machine learning) dan banyak perkembangan baru yang ditemukan setelah itu, seperti misalnya:

  • memisahkan bias dari vektor parameter θ. Kalau di kursus ML sebelumnya, bias direpresentasikan dengan θ0 dan merupakan bagian dari vektor parameter θ, namun ternyata hal ini kurang bagus, dan dianjurkan agar bias direpresentasikan dalam variabel terpisah.
  • fungsi aktivasi sigmoid juga ternyata kurang bagus untuk fungsi aktivasi di hidden layer, dan dianjurkan untuk memakai fungsi aktivasi yang lain seperti ReLU atau tanh.
  • neural networks tidak lagi digadang-gadang sebagai cerminan dari bagaimana otak bekerja, karena sampai saat ini kita tidak tahu persis bagaimana otak bekerja
  • dsb. Sebaiknya saya tidak terlalu banyak memberikan spoiler di sini 🙂

Catatan: kalau Anda mengikuti kursus ini merasa kehilangan jejak atas semua formula yang telah diajarkan, saya membuat cheatsheet kursus ini dan kursus lanjutannya di Student Notes: Neural Networks and Deep Learning.

Disamping materi teknis, ada juga materi video-video wawancara dengan “pahlawan deep learning” (Heroes of Deep Learning). Dalam kursus ini, “pahlawan” yang diwawancara adalah Geoffrey Hinton, Pieter Abbeel, dan Ian Goodfellow. Video-video ini bagus dan menginspirasi dan berisi tips-tips untuk orang yang ingin terjun di bidang machine learning/deep learning.

Rating untuk lingkup materi: starf16starf16starf16starf16starf16

Pengajaran

  • starf16 Spesialisasi dari Prof Ng adalah membuat materi belajar yang sulit menjadi mudah dan tidak menakutkan. Gaya mengajar Prof Ng membuat kursus ini mudah untuk diikuti.

Rating untuk pengajaran: starf16starf16starf16starf16starf16

Pemrograman

  • starf16 Pemrograman dan penilaian tugas dengan Jupyter iPython notebook sehingga terasa modern dan nyaman.
  • starf16 Anda dibimbing untuk membuat neural network (dalam Python) dari mulai yang sederhana sampai dengan banyak hidden layer.
  • stare16 Ada bug di sistem penilaian untuk tugas di minggu ke-4 sehingga Anda tidak bisa mendapatkan nilai sempurna, tapi hal ini bisa diatasi. Anda bisa melihat diskusi di forum untuk solusinya.

Rating untuk pemrograman: starf16starf16starf16starf16starf16

Dukungan

  • starh16 Ada forum untuk diskusi dan isinya cukup aktif. Namun partisipasi mentornya agak kurang. Ada pertanyaan yang berhari-hari tidak dijawab.

Rating untuk dukungan: starf16starf16starf16stare16stare16

Kesimpulan

Deep learning adalah kemajuan utama dari machine learning dalam satu dekade terakhir ini dan telah memicu perkembangan yang hebat di machine learning terutama di bagian supervised learning dan reinforcement learning. Dengan demikian maka deep learning adalah topik yang sangat layak untuk dipelajari di bidang machine learning.

Kursus ini sangat bagus untuk Anda yang sudah sedikit mengenal tentang machine learning dan ingin belajar lebih jauh tentang neural networks dengan visi untuk belajar tentang deep learning. Dibanding sumber yang lain (misalnya kursus Neural Networks-nya Geoffrey Hinton atau buku Deep Learning-nya Ian Goodfellow dkk), kursus ini jauh lebih mudah untuk diikuti oleh pemula/menengah seperti saya.

Namun materi kursus ini hanya relatif mendasar. Harapan saya kursus-kursus lanjutan di program Deep Learning Specialization akan memberikan pelajaran lebih lanjut dan juga mudah untuk diikuti sehingga setelah mengikuti program spesialisasi ini saya akan lebih percaya diri untuk belajar deep learning lebih jauh misalnya dari buku Deep Learning di atas.

Iklan

4 respons untuk ‘Ulasan MOOC: Neural Networks and Deep Learning – oleh Andrew Ng (deeplearning.ai) via Coursera

Add yours

  1. Terimakasih reviewnya mas 🙂
    mau nanya, itu 7 days free apakah untuk semua spesialisasi (5 courses sekaligus) atau per coursenya ya?
    Lalu dari segi programmingnya apakah termasuk sulit atau bagaimana menurut mas?
    hehe makasih sebelumnya.

    Suka

      1. oh gituu ya.
        berarti kalau dari segi programmingnya sendiri relatif mudah ya?
        apa masalah yang ada cukup challenging buat mas pribadi?

        Suka

      2. Rasanya ga ada sih. Saya sedang mencoba untuk membaca buku “Deep Learning”-nya Ian Goodfellow, nah ini baru susah banget. Bagian pendahuluan aljabar liniernya saja udah puyeng hehe. Dibanding itu, kursus ini rasanya cukup mudah. Sering saya membercepat videonya dengan speed 1.25x. Untuk kursus pertama yg 4 minggu, saya selesaikan dalam 2 hari. Kursus kedua yg tiga minggu saya juga sudah selesai dalam 1 hari saja hehe. Makanya saya rekomen karena cukup terjangkau untuk pemula

        Suka

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google+

You are commenting using your Google+ account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s

Blog di WordPress.com.

Atas ↑

%d blogger menyukai ini: